Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Lancet HIV ; 11(5): e285-e299, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38692824

RESUMEN

BACKGROUND: An effective HIV vaccine will most likely need to have potent immunogenicity and broad cross-subtype coverage. The aim of the HIV Vaccine Trials Network (HVTN) 124 was to evaluate safety and immunogenicity of a unique polyvalent DNA-protein HIV vaccine with matching envelope (Env) immunogens. METHODS: HVTN 124 was a randomised, phase 1, placebo-controlled, double-blind study, including participants who were HIV seronegative and aged 18-50 years at low risk for infection. The DNA vaccine comprised five plasmids: four copies expressing Env gp120 (clades A, B, C, and AE) and one gag p55 (clade C). The protein vaccine included four DNA vaccine-matched GLA-SE-adjuvanted recombinant gp120 proteins. Participants were enrolled across six clinical sites in the USA and were randomly assigned to placebo or one of two vaccine groups (ie, prime-boost or coadministration) in a 5:1 ratio in part A and a 7:1 ratio in part B. Vaccines were delivered via intramuscular needle injection. The primary outcomes were safety and tolerability, assessed via frequency, severity, and attributability of local and systemic reactogenicity and adverse events, laboratory safety measures, and early discontinuations. Part A evaluated safety. Part B evaluated safety and immunogenicity of two regimens: DNA prime (administered at months 0, 1, and 3) with protein boost (months 6 and 8), and DNA-protein coadministration (months 0, 1, 3, 6, and 8). All randomly assigned participants who received at least one dose were included in the safety analysis. The study is registered with ClinicalTrials.gov (NCT03409276) and is closed to new participants. FINDINGS: Between April 19, 2018 and Feb 13, 2019, 60 participants (12 in part A [five men and seven women] and 48 in part B [21 men and 27 women]) were enrolled. All 60 participants received at least one dose, and 14 did not complete follow-up (six of 21 in the prime-boost group and eight of 21 in the coadminstration group). 11 clinical adverse events deemed by investigators as study-related occurred in seven of 48 participants in part B (eight of 21 in the prime-boost group and three of 21 in the coadministration group). Local reactogenicity in the vaccine groups was common, but the frequency and severity of reactogenicity signs or symptoms did not differ between the prime-boost and coadministration groups (eg, 20 [95%] of 21 in the prime-boost group vs 21 [100%] of 21 in the coadministration group had either local pain or tenderness of any severity [p=1·00], and seven [33%] vs nine [43%] had either erythema or induration [p=0·97]), nor did laboratory safety measures. There were no delayed-type hypersensitivity reactions or vasculitis or any severe clinical adverse events related to vaccination. The most frequently reported systemic reactogenicity symptoms in the active vaccine groups were malaise or fatigue (five [50%] of ten in part A and 17 [81%] of 21 in the prime-boost group vs 15 [71%] of 21 in the coadministration group in part B), headache (five [50%] and 18 [86%] vs 12 [57%]), and myalgia (four [40%] and 13 [62%] vs ten [48%]), mostly of mild or moderate severity. INTERPRETATION: Both vaccine regimens were safe, warranting evaluation in larger trials. FUNDING: US National Institutes of Health and US National Institute of Allergy and Infectious Diseases.


Asunto(s)
Vacunas contra el SIDA , Anticuerpos Anti-VIH , Infecciones por VIH , VIH-1 , Vacunas de ADN , Humanos , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/inmunología , Vacunas contra el SIDA/efectos adversos , Adulto , Masculino , Femenino , Método Doble Ciego , Vacunas de ADN/administración & dosificación , Vacunas de ADN/inmunología , Vacunas de ADN/efectos adversos , Infecciones por VIH/prevención & control , Infecciones por VIH/inmunología , Persona de Mediana Edad , Adulto Joven , Anticuerpos Anti-VIH/sangre , Adolescente , VIH-1/inmunología , Estados Unidos , Inmunización Secundaria , Inmunogenicidad Vacunal , Proteína gp120 de Envoltorio del VIH/inmunología , Proteína gp120 de Envoltorio del VIH/genética , Anticuerpos Neutralizantes/sangre
2.
Vaccine ; 41(42): 6309-6317, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37679276

RESUMEN

BACKGROUND: An approach to a preventive HIV vaccine is induction of effective broadly neutralizing antibodies (bnAbs) and effector binding antibodies (bAbs). Preclinical studies suggest that trimeric envelope (Env) proteins may elicit nAbs, which led to the development of the recombinant gp145 subtype C Env protein (gp145 C.6980) immunogen. HVTN 122 was a Phase 1 trial that evaluated the safety, tolerability, and immunogenicity of gp145 C.6980 in adults. METHODS: Healthy, HIV-1 seronegative adults received three intramuscular injections of gp145 C.6980 with aluminum hydroxide (alum) at months 0, 2, and 6 at either 300 mcg (high dose, n = 25) or 100 mcg (low dose, n = 15), or placebo/saline (placebo, n = 5). Participants were followed for 12 months. RESULTS: Forty-five participants were enrolled. High and low doses of the study protein were well-tolerated, with mild or moderate reactogenicity commonly reported. Only one adverse event (mild injection site pruritis) in one participant (low dose) was considered product-related; there were no dose-limiting toxicities. High and low dose recipients demonstrated robust bAb responses to vaccine-matched consensus gp140 Env and subtype-matched gp120 Env proteins two weeks post-last vaccination (response rates >90 %), while no responses were detected to a heterologous subtype-matched V1V2 antigen. No significant differences were seen between high and low dose groups. Participants in both experimental arms demonstrated nAb response rates of 76.5 % to a tier 1 virus (MW9635.26), but no responses to tier 2 isolates. Env-specific CD4 + T-cell responses were elicited in 36.4 % of vaccine recipients, without significant differences between groups; no participants demonstrated CD8 + T-cell responses. CONCLUSIONS: Three doses of novel subtype C gp145 Env protein with alum were safe and well-tolerated. Participants demonstrated bAb, Env-specific CD4 + T-cell, and tier 1 nAb responses, but the regimen failed to induce tier 2 or heterologous nAb responses. CLINICAL TRIALS REGISTRATION: NCT03382418.

3.
Vaccine ; 41(16): 2696-2706, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36935288

RESUMEN

BACKGROUND: HIV subtypes B and C together account for around 60% of HIV-1 cases worldwide. We evaluated the safety and immunogenicity of a subtype B DNA vaccine prime followed by a subtype C viral vector boost. METHODS: Fourteen healthy adults received DNA plasmid encoding HIV-1 subtype B nef/tat/vif and env (n = 11) or placebo (n = 3) intramuscularly (IM) via electroporation (EP) at 0, 1, and 3 months, followed by IM injection of recombinant vesicular stomatitis virus encoding subtype C Env or placebo at 6 and 9 months. Participants were assessed for safety, tolerability of EP, and Env-specific T-cell and antibody responses. RESULTS: EP was generally well tolerated, although some device-related adverse events did occur, and vaccine reactogenicity was mild to moderate. The vaccine stimulated Env-specific CD4 + T-cell responses in greater than 80% of recipients, and CD8 + T-cell responses in 30%. Subtype C Env-specific IgG binding antibodies (bAb) were elicited in all vaccine recipients, and antibody-dependent cell-mediated cytotoxicity (ADCC) responses to vaccine-matched subtype C targets in 80%. Negligible V1/V2 and neutralizing antibody (nAb) responses were detected. CONCLUSIONS: This prime/boost regimen was safe and tolerable, with some device-related events, and immunogenic. Although immunogenicity missed targets for an HIV vaccine, the DNA/rVSV platform may be useful for other applications. CLINICALTRIALS: gov: NCT02654080.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , Vacunas de ADN , Estomatitis Vesicular , Adulto , Animales , Humanos , Inmunización Secundaria , Infecciones por VIH/prevención & control , Electroporación , Anticuerpos Neutralizantes , ADN , Anticuerpos Anti-VIH
4.
J Clin Invest ; 133(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36787249

RESUMEN

BACKGROUNDMosaic and consensus HIV-1 immunogens provide two distinct approaches to elicit greater breadth of coverage against globally circulating HIV-1 and have shown improved immunologic breadth in nonhuman primate models.METHODSThis double-blind randomized trial enrolled 105 healthy HIV-uninfected adults who received 3 doses of either a trivalent global mosaic, a group M consensus (CON-S), or a natural clade B (Nat-B) gp160 env DNA vaccine followed by 2 doses of a heterologous modified vaccinia Ankara-vectored HIV-1 vaccine or placebo. We performed prespecified blinded immunogenicity analyses at day 70 and day 238 after the first immunization. T cell responses to vaccine antigens and 5 heterologous Env variants were fully mapped.RESULTSEnv-specific CD4+ T cell responses were induced in 71% of the mosaic vaccine recipients versus 48% of the CON-S recipients and 48% of the natural Env recipients. The mean number of T cell epitopes recognized was 2.5 (95% CI, 1.2-4.2) for mosaic recipients, 1.6 (95% CI, 0.82-2.6) for CON-S recipients, and 1.1 (95% CI, 0.62-1.71) for Nat-B recipients. Mean breadth was significantly greater in the mosaic group than in the Nat-B group using overall (P = 0.014), prime-matched (P = 0.002), heterologous (P = 0.046), and boost-matched (P = 0.009) measures. Overall T cell breadth was largely due to Env-specific CD4+ T cell responses.CONCLUSIONPriming with a mosaic antigen significantly increased the number of epitopes recognized by Env-specific T cells and enabled more, albeit still limited, cross-recognition of heterologous variants. Mosaic and consensus immunogens are promising approaches to address global diversity of HIV-1.TRIAL REGISTRATIONClinicalTrials.gov NCT02296541.FUNDINGUS NIH grants UM1 AI068614, UM1 AI068635, UM1 AI068618, UM1 AI069412, UL1 RR025758, P30 AI064518, UM1 AI100645, and UM1 AI144371, and Bill & Melinda Gates Foundation grant OPP52282.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , Vacunas de ADN , Animales , Consenso , Inmunidad Celular , Vacunación , Virus Vaccinia , Anticuerpos Anti-VIH
5.
JCI Insight ; 5(13)2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32437332

RESUMEN

BACKGROUNDHVTN 098, a randomized, double-blind, placebo-controlled trial, evaluated the safety, tolerability, and immunogenicity of PENNVAX-GP HIV DNA vaccine, administered with or without plasmid IL-12 (pIL-12), via intradermal (ID) or intramuscular (IM) electroporation (EP) in healthy, HIV-uninfected adults. The study tested whether PENNVAX-GP delivered via ID/EP at one-fifth the dose could elicit equivalent immune responses to delivery via IM/EP and whether inclusion of pIL-12 provided additional benefit.METHODSParticipants received DNA encoding HIV-1 env/gag/pol in 3 groups: 1.6 mg ID (ID no IL-12 group, n = 20), 1.6 mg ID + 0.4 mg pIL-12 (ID + IL-12 group, n = 30), 8 mg IM + 1 mg pIL-12 (IM + IL-12 group, n = 30), or placebo (n = 9) via EP at 0, 1, 3, and 6 months. Results of cellular and humoral immunogenicity assessments are reported.RESULTSFollowing vaccination, the frequency of responders (response rate) to any HIV protein based on CD4+ T cells expressing IFN-γ or IL-2 was 96% for both the ID + IL-12 and IM + IL-12 groups; CD8+ T cell response rates were 64% and 44%, respectively. For ID delivery, the inclusion of pIL-12 increased CD4+ T cell response rate from 56% to 96%. The frequency of responders was similar (≥90%) for IgG binding antibody to gp140 consensus Env across all groups, but the magnitude was higher in the ID + IL-12 group compared with the IM + IL-12 group.CONCLUSIONPENNVAX-GP DNA induced robust cellular and humoral immune responses, demonstrating that immunogenicity of DNA vaccines can be enhanced by EP route and inclusion of pIL-12. ID/EP was dose sparing, inducing equivalent, or in some aspects superior, immune responses compared with IM/EP.TRIAL REGISTRATIONClinicalTrials.gov NCT02431767.FUNDINGThis work was supported by National Institute of Allergy and Infectious Diseases (NIAID), U.S. Public Health Service grants, an HIV Vaccine Design and Development Team contract, Integrated Preclinical/Clinical AIDS Vaccine Development Program, and an NIH award.


Asunto(s)
Vacunas contra el SIDA/inmunología , ADN/inmunología , Infecciones por VIH/inmunología , Vacunas de ADN/inmunología , Adulto , Linfocitos T CD8-positivos/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , Humanos , Inmunidad Humoral/inmunología , Persona de Mediana Edad , Estados Unidos , Vacunación/métodos , Vacunas de ADN/genética , Adulto Joven
6.
PLoS Med ; 17(2): e1003038, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32092060

RESUMEN

BACKGROUND: HVTN 100 evaluated the safety and immunogenicity of an HIV subtype C pox-protein vaccine regimen, investigating a 12-month booster to extend vaccine-induced immune responses. METHODS AND FINDINGS: A phase 1-2 randomized double-blind placebo-controlled trial enrolled 252 participants (210 vaccine/42 placebo; median age 23 years; 43% female) between 9 February 2015 and 26 May 2015. Vaccine recipients received ALVAC-HIV (vCP2438) alone at months 0 and 1 and with bivalent subtype C gp120/MF59 at months 3, 6, and 12. Antibody (IgG, IgG3 binding, and neutralizing) and CD4+ T-cell (expressing interferon-gamma, interleukin-2, and CD40 ligand) responses were evaluated at month 6.5 for all participants and at months 12, 12.5, and 18 for a randomly selected subset. The primary analysis compared IgG binding antibody (bAb) responses and CD4+ T-cell responses to 3 vaccine-matched antigens at peak (month 6.5 versus 12.5) and durability (month 12 versus 18) timepoints; IgG responses to CaseA2_gp70_V1V2.B, a primary correlate of risk in RV144, were also compared at these same timepoints. Secondary and exploratory analyses compared IgG3 bAb responses, IgG bAb breadth scores, neutralizing antibody (nAb) responses, antibody-dependent cellular phagocytosis, CD4+ polyfunctionality responses, and CD4+ memory sub-population responses at the same timepoints. Vaccines were generally safe and well tolerated. During the study, there were 2 deaths (both in the vaccine group and both unrelated to study products). Ten participants became HIV-infected during the trial, 7% (3/42) of placebo recipients and 3% (7/210) of vaccine recipients. All 8 serious adverse events were unrelated to study products. Less waning of immune responses was seen after the fifth vaccination than after the fourth, with higher antibody and cellular response rates at month 18 than at month 12: IgG bAb response rates to 1086.C V1V2, 21.0% versus 9.7% (difference = 11.3%, 95% CI = 0.6%-22.0%, P = 0.039), and ZM96.C V1V2, 21.0% versus 6.5% (difference = 14.5%, 95% CI = 4.1%-24.9%, P = 0.004). IgG bAb response rates to all 4 primary V1V2 antigens were higher 2 weeks after the fifth vaccination than 2 weeks after the fourth vaccination: 87.7% versus 75.4% (difference = 12.3%, 95% CI = 1.7%-22.9%, P = 0.022) for 1086.C V1V2, 86.0% versus 63.2% (difference = 22.8%, 95% CI = 9.1%-36.5%, P = 0.001) for TV1c8.2.C V1V2, 67.7% versus 44.6% (difference = 23.1%, 95% CI = 10.4%-35.7%, P < 0.001) for ZM96.C V1V2, and 81.5% versus 60.0% (difference = 21.5%, 95% CI = 7.6%-35.5%, P = 0.002) for CaseA2_gp70_V1V2.B. IgG bAb response rates to the 3 primary vaccine-matched gp120 antigens were all above 90% at both peak timepoints, with no significant differences seen, except a higher response rate to ZM96.C gp120 at month 18 versus month 12: 64.5% versus 1.6% (difference = 62.9%, 95% CI = 49.3%-76.5%, P < 0.001). CD4+ T-cell response rates were higher at month 18 than month 12 for all 3 primary vaccine-matched antigens: 47.3% versus 29.1% (difference = 18.2%, 95% CI = 2.9%-33.4%, P = 0.021) for 1086.C, 61.8% versus 38.2% (difference = 23.6%, 95% CI = 9.5%-37.8%, P = 0.001) for TV1.C, and 63.6% versus 41.8% (difference = 21.8%, 95% CI = 5.1%-38.5%, P = 0.007) for ZM96.C, with no significant differences seen at the peak timepoints. Limitations were that higher doses of gp120 were not evaluated, this study was not designed to investigate HIV prevention efficacy, and the clinical significance of the observed immunological effects is uncertain. CONCLUSIONS: In this study, a 12-month booster of subtype C pox-protein vaccines restored immune responses, and slowed response decay compared to the 6-month vaccination. TRIAL REGISTRATION: ClinicalTrials.gov NCT02404311. South African National Clinical Trials Registry (SANCTR number: DOH--27-0215-4796).


Asunto(s)
Vacunas contra el SIDA/uso terapéutico , Anticuerpos Neutralizantes/inmunología , Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/prevención & control , Proteínas del Virus de la Inmunodeficiencia Humana/inmunología , Inmunización Secundaria , Inmunoglobulina G/inmunología , Vacunas contra el SIDA/inmunología , Adulto , Artralgia/inducido químicamente , Método Doble Ciego , Femenino , Cefalea/inducido químicamente , Humanos , Inmunogenicidad Vacunal , Reacción en el Punto de Inyección , Inyecciones Intramusculares , Masculino , Sudáfrica , Adulto Joven
7.
Sci Rep ; 10(1): 2093, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034163

RESUMEN

In the RV144 trial, vaccine-induced V1V2 IgG correlated with decreased HIV-1 risk. We investigated circulating antibody specificities in two phase 1 poxvirus prime-protein boost clinical trials conducted in South Africa: HVTN 097 (subtype B/E) and HVTN 100 (subtype C). With cross-subtype peptide microarrays and multiplex binding assays, we probed the magnitude and breadth of circulating antibody responses to linear variable loop 2 (V2) and conformational V1V2 specificities. Antibodies targeting the linear V2 epitope, a correlate of decreased HIV-1 risk in RV144, were elicited up to 100% and 61% in HVTN 097 and HVTN 100, respectively. Despite higher magnitude of envelope-specific responses in HVTN 100 compared to HVTN 097 (p's < 0.001), the magnitude and positivity for V2 linear epitope and V1V2 proteins were significantly lower in HVTN 100 compared to HVTN 097. Meanwhile, responses to other major linear epitopes including the variable 3 (V3) and constant 5 (C5) epitopes were higher in HVTN 100 compared to HVTN 097. Our data reveal substantial differences in the circulating antibody specificities induced by vaccination in these two canarypox prime-protein boost trials. Our findings suggest that the choice of viral sequences in prime-boost vaccine regimens, and potentially adjuvants and immunogen dose, influence the elicitation of V2-specific antibodies.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , VIH-1/inmunología , Especificidad de Anticuerpos/inmunología , Virus de la Viruela de los Canarios/inmunología , Epítopos/inmunología , Femenino , Proteína gp120 de Envoltorio del VIH/inmunología , Humanos , Inmunización Secundaria , Masculino
8.
J Infect Dis ; 219(11): 1755-1765, 2019 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-30615119

RESUMEN

BACKGROUND: The durability and breadth of human immunodeficiency virus type 1 (HIV-1)-specific immune responses elicited through vaccination are important considerations in the development of an effective HIV-1 vaccine. Responses to HIV-1 envelope subunit protein (Env) immunization in humans are often described as short-lived. METHODS: We enrolled 16 healthy volunteers who had received priming with an HIV-1 subtype B Env vaccine given with MF59 adjuvant 5-17 years previously and 20 healthy unprimed volunteers. Three booster immunizations with a heterologous subtype C trimeric gp140 protein vaccine were administered to the primed group, and the same subtype C gp140 protein vaccination regimen was administered to the unprimed subjects. RESULTS: Binding antibodies and neutralizing antibodies to tier 1 viral isolates were detected in the majority of previously primed subjects. Remarkably, a single dose of protein boosted binding and neutralizing antibody titers in 100% of primed subjects following this prolonged immunologic rest period, and CD4+ T-cell responses were boosted in 75% of primed individuals. CONCLUSIONS: These results demonstrate that HIV-1 protein immunogens can elicit durable memory T- and B-cell responses and that strong tier 1 virus neutralizing responses can be elicited by a single booster dose of protein following a long immunologic rest period. However, we found no evidence that cross-clade boosting led to a significantly broadened neutralizing antibody response.


Asunto(s)
Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , Adyuvantes Inmunológicos , Adolescente , Adulto , Anticuerpos Neutralizantes/inmunología , Infecciones por VIH/virología , Humanos , Inmunización Secundaria , Persona de Mediana Edad , Vacunación , Adulto Joven
9.
Lancet HIV ; 5(7): e366-e378, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29898870

RESUMEN

BACKGROUND: Modest efficacy was reported for the HIV vaccine tested in the RV144 trial, which comprised a canarypox vector (ALVAC) and envelope (env) glycoprotein (gp120). These vaccine components were adapted to express HIV-1 antigens from strains circulating in South Africa, and the adjuvant was changed to increase immunogenicity. Furthermore, 12-month immunisation was added to improve durability. In the HIV Vaccine Trials Network (HVTN) 100 trial, we aimed to assess this new regionally adapted regimen for advancement to efficacy testing. METHODS: HVTN 100 is a phase 1/2, randomised controlled, double-blind trial at six community research sites in South Africa. We randomly allocated adults (aged 18-40 years) without HIV infection and at low risk of HIV infection to either the vaccine regimen (intramuscular injection of ALVAC-HIV vector [vCP2438] at 0, 1, 3, 6, and 12 months plus bivalent subtype C gp120 and MF59 adjuvant at 3, 6, and 12 months) or placebo, in a 5:1 ratio. Randomisation was done by computer-generated list. Participants, investigators, and those assessing outcomes were masked to random assignments. Primary outcomes included safety and immune responses associated with correlates of HIV risk in RV144, 2 weeks after vaccination at 6 months (month 6·5). We compared per-protocol participants (ie, those who completed the first four vaccinations and provided samples at month 6·5) from HVTN 100 with stored RV144 samples assayed contemporaneously. This trial is registered with the South African National Clinical Trials Registry (DOH-27-0215-4796) and ClinicalTrials.gov (NCT02404311). FINDINGS: Between Feb 9, 2015, and May 26, 2015, 252 participants were enrolled, of whom 210 were assigned vaccine and 42 placebo. 222 participants were included in the per-protocol analysis (185 vaccine and 37 placebo). 185 (100%) vaccine recipients developed IgG binding antibodies to all three vaccine-matched gp120 antigens with significantly higher titres (3·6-8·8 fold; all p<0·0001) than the corresponding vaccine-matched responses of RV144. The CD4+ T-cell response to the ZM96.C env protein in HVTN 100 was 56·4% (n=102 responders), compared with a response of 41·4% (n=79 responders) to 92TH023.AE in RV144 (p=0·0050). The IgG response to the 1086.C variable loops 1 and 2 (V1V2) env antigen in HVTN 100 was 70·5% (95% CI 63·5-76·6; n=129 responders), lower than the response to V1V2 in RV144 (99·0%, 95% CI 96·4-99·7; n=199 responders). INTERPRETATION: Although the IgG response to the HVTN 100 vaccine was lower than that reported in RV144, it exceeded the predicted 63% threshold needed for 50% vaccine efficacy using a V1V2 correlate of protection model. Thus, the subtype C HIV vaccine regimen qualified for phase 2b/3 efficacy testing, a critical next step of vaccine development. FUNDING: US National Institute of Allergy and Infectious Diseases (NIAID), and Bill & Melinda Gates Foundation.


Asunto(s)
Vacunas contra el SIDA/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/efectos adversos , Adyuvantes Inmunológicos/administración & dosificación , Adolescente , Adulto , Método Doble Ciego , Femenino , Vectores Genéticos , Anticuerpos Anti-VIH/sangre , Proteína gp120 de Envoltorio del VIH/administración & dosificación , Proteína gp120 de Envoltorio del VIH/genética , Infecciones por VIH/inmunología , Humanos , Inmunoglobulina G/sangre , Masculino , Polisorbatos/administración & dosificación , Sudáfrica/epidemiología , Escualeno/administración & dosificación , Vacunación , Adulto Joven
10.
Vaccine ; 36(4): 427-437, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29174315

RESUMEN

On May 21st, 2015, the U.S. National Institute of Allergy and Infectious Diseases (NIAID) convened a workshop on delivery devices for nucleic acid (NA) as vaccines in order to review the landscape of past and future technologies for administering NA (e.g., DNA, RNA, etc.) as antigen into target tissues of animal models and humans. Its focus was on current and future applications for preventing and treating human immunodeficiency virus (HIV) infection and acquired immune deficiency syndrome (AIDS) disease, among other infectious-disease priorities. Meeting participants presented the results and experience of representative clinical trials of NA vaccines using a variety of alternative delivery devices, as well as a broader group of methods studied in animal models and at bench top, to improve upon the performance and/or avoid the drawbacks of conventional needle-syringe (N-S) delivery. The subjects described and discussed included (1) delivery targeted into oral, cutaneous/intradermal, nasal, upper and lower respiratory, and intramuscular tissues; (2) devices and techniques for jet injection, solid, hollow, and dissolving microneedles, patches for topical passive diffusion or iontophoresis, electroporation, thermal microporation, nasal sprayers, aerosol upper-respiratory and pulmonary inhalation, stratum-corneum ablation by ultrasound, chemicals, and mechanical abrasion, and kinetic/ballistic delivery; (3) antigens, adjuvants, and carriers such as DNA, messenger RNA, synthesized plasmids, chemokines, wet and dry aerosols, and pollen-grain and microparticle vectors; and (4) the clinical experience and humoral, cellular, and cytokine immune responses observed for many of these target tissues, technologies, constructs, and carriers. This report summarizes the presentations and discussions from the workshop (https://web.archive.org/web/20160228112310/https://www.blsmeetings.net/NucleicAcidDeliveryDevices/), which was webcast live in its entirety and archived online (http://videocast.nih.gov/summary.asp?live=16059).


Asunto(s)
Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , Vacunas de ADN/administración & dosificación , Vacunas de ADN/inmunología , Vacunas contra el SIDA/genética , Animales , VIH-1/genética , Humanos , Vacunas de ADN/genética
11.
PLoS One ; 11(9): e0161753, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27583368

RESUMEN

BACKGROUND: The safety and immunogenicity of SAAVI DNA-C2 (4 mg IM), SAAVI MVA-C (2.9 x 109 pfu IM) and Novartis V2-deleted subtype C gp140 (100 mcg) with MF59 adjuvant in various vaccination regimens was evaluated in HIV-uninfected adults in South Africa. METHODS: Participants at three South African sites were randomized (1:1:1:1) to one of four vaccine regimens: MVA prime, sequential gp140 protein boost (M/M/P/P); concurrent MVA/gp140 (MP/MP); DNA prime, sequential MVA boost (D/D/M/M); DNA prime, concurrent MVA/gp140 boost (D/D/MP/MP) or placebo. Peak HIV specific humoral and cellular responses were measured. RESULTS: 184 participants were enrolled: 52% were female, all were Black/African, median age was 23 years (range, 18-42 years) and 79% completed all vaccinations. 159 participants reported at least one adverse event, 92.5% were mild or moderate. Five, unrelated, serious adverse events were reported. The M/M/P/P and D/D/MP/MP regimens induced the strongest peak neutralizing and binding antibody responses and the greatest CD4+ T-cell responses to Env. All peak neutralizing and binding antibody responses decayed with time. The MVA, but not DNA, prime contributed to the humoral and cellular immune responses. The D/D/M/M regimen was poorly immunogenic overall but did induce modest CD4+ T-cell responses to Gag and Pol. CD8+ T-cell responses to any antigen were low for all regimens. CONCLUSIONS: The SAAVI DNA-C2, SAAVI MVA-C and Novartis gp140 with MF59 adjuvant in various combinations were safe and induced neutralizing and binding antibodies and cellular immune responses. Sequential immunization with gp140 boosted immune responses primed by MVA or DNA. The best overall immune responses were seen with the M/M/P/P regimen. TRIAL REGISTRATION: ClinicalTrials.gov NCT01418235.


Asunto(s)
VIH-1/inmunología , Inmunización Secundaria/efectos adversos , Inmunización Secundaria/métodos , Vacunas de ADN/inmunología , Vaccinia/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/efectos adversos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Adolescente , Adulto , Anticuerpos Neutralizantes/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Femenino , Seropositividad para VIH/inmunología , VIH-1/fisiología , Humanos , Masculino , Embarazo , Seguridad , Sudáfrica , Factores de Tiempo , Adulto Joven
12.
Clin Vaccine Immunol ; 23(6): 496-506, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27098021

RESUMEN

A phase I safety and immunogenicity study investigated South African AIDS Vaccine Initiative (SAAVI) HIV-1 subtype C (HIV-1C) DNA vaccine encoding Gag-RT-Tat-Nef and gp150, boosted with modified vaccinia Ankara (MVA) expressing matched antigens. Following the finding of partial protective efficacy in the RV144 HIV vaccine efficacy trial, a protein boost with HIV-1 subtype C V2-deleted gp140 with MF59 was added to the regimen. A total of 48 participants (12 U.S. participants and 36 Republic of South Africa [RSA] participants) were randomized to receive 3 intramuscular (i.m.) doses of SAAVI DNA-C2 of 4 mg (months 0, 1, and 2) and 2 i.m. doses of SAAVI MVA-C of 1.45 × 10(9) PFU (months 4 and 5) (n = 40) or of a placebo (n = 8). Approximately 2 years after vaccination, 27 participants were rerandomized to receive gp140/MF59 at 100 µg or placebo, as 2 i.m. injections, 3 months apart. The vaccine regimen was safe and well tolerated. After the DNA-MVA regimen, CD4(+) T-cell and CD8(+) T-cell responses occurred in 74% and 32% of the participants, respectively. The protein boost increased CD4(+) T-cell responses to 87% of the subjects. All participants developed tier 1 HIV-1C neutralizing antibody responses as well as durable Env binding antibodies that recognized linear V3 and C5 peptides. The HIV-1 subtype C DNA-MVA vaccine regimen showed promising cellular immunogenicity. Boosting with gp140/MF59 enhanced levels of binding and neutralizing antibodies as well as CD4(+) T-cell responses to HIV-1 envelope. (This study has been registered at ClinicalTrials.gov under registration no. NCT00574600 and NCT01423825.).


Asunto(s)
Vacunas contra el SIDA/inmunología , Síndrome de Inmunodeficiencia Adquirida/prevención & control , Anticuerpos Neutralizantes/sangre , Esquemas de Inmunización , Inmunización Secundaria , Vacunas de ADN/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/clasificación , Adolescente , Adulto , Recuento de Linfocito CD4 , Ensayo de Immunospot Ligado a Enzimas , Femenino , Anticuerpos Anti-VIH/sangre , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Humanos , Inmunidad Celular , Inmunización Secundaria/efectos adversos , Inyecciones Intramusculares , Masculino , Sudáfrica , Factores de Tiempo , Vacunación , Vacunas de ADN/administración & dosificación , Vaccinia/genética , Vaccinia/inmunología , Adulto Joven , Productos del Gen env del Virus de la Inmunodeficiencia Humana/administración & dosificación
13.
Open Forum Infect Dis ; 2(3): ofv082, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26199949

RESUMEN

Background. We report the first-in-human safety and immunogenicity evaluation of a highly attenuated, replication-competent recombinant vesicular stomatitis virus (rVSV) human immunodeficiency virus (HIV)-1 vaccine. Methods. Sixty healthy, HIV-1-uninfected adults were enrolled in a randomized, double-blinded, placebo-controlled dose-escalation study. Groups of 12 participants received rVSV HIV-1 gag vaccine at 5 dose levels (4.6 × 10(3) to 3.4 × 10(7) particle forming units) (N = 10/group) or placebo (N = 2/group), delivered intramuscularly as bilateral injections at 0 and 2 months. Safety monitoring included VSV cultures from blood, urine, saliva, and swabs of oral lesions. Vesicular stomatitis virus-neutralizing antibodies, T-cell immunogenicity, and HIV-1 specific binding antibodies were assessed. Results. Local and systemic reactogenicity symptoms were mild to moderate and increased with dose. No severe reactogenicity or product-related serious adverse events were reported, and all rVSV cultures were negative. All vaccine recipients became seropositive for VSV after 2 vaccinations. gag-specific T-cell responses were detected in 63% of participants by interferon-γ enzyme-linked immunospot at the highest dose post boost. Conclusions. An attenuated replication-competent rVSV gag vaccine has an acceptable safety profile in healthy adults. This rVSV vector is a promising new vaccine platform for the development of vaccines to combat HIV-1 and other serious human diseases.

14.
J Virol ; 89(15): 7478-93, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25972551

RESUMEN

UNLABELLED: Eliciting broadly reactive functional antibodies remains a challenge in human immunodeficiency virus type 1 (HIV-1) vaccine development that is complicated by variations in envelope (Env) subtype and structure. The majority of new global HIV-1 infections are subtype C, and novel antigenic properties have been described for subtype C Env proteins. Thus, an HIV-1 subtype C Env protein (CO6980v0c22) from an infected person in the acute phase (Fiebig stage I/II) was developed as a research reagent and candidate immunogen. The gp145 envelope is a novel immunogen with a fully intact membrane-proximal external region (MPER), extended by a polylysine tail. Soluble gp145 was enriched for trimers that yielded the expected "fan blade" motifs when visualized by cryoelectron microscopy. CO6980v0c22 gp145 reacts with the 4E10, PG9, PG16, and VRC01 HIV-1 neutralizing monoclonal antibodies (MAbs), as well as the V1/V2-specific PGT121, 697, 2158, and 2297 MAbs. Different gp145 oligomers were tested for immunogenicity in rabbits, and purified dimers, trimers, and larger multimers elicited similar levels of cross-subtype binding and neutralizing antibodies to tier 1 and some tier 2 viruses. Immunized rabbit sera did not neutralize the highly resistant CO6980v0c22 pseudovirus but did inhibit the homologous infectious molecular clone in a peripheral blood mononuclear cell (PBMC) assay. This Env is currently in good manufacturing practice (GMP) production to be made available for use as a clinical research tool and further evaluation as a candidate vaccine. IMPORTANCE: At present, the product pipeline for HIV vaccines is insufficient and is limited by inadequate capacity to produce large quantities of vaccine to standards required for human clinical trials. Such products are required to evaluate critical questions of vaccine formulation, route, dosing, and schedule, as well as to establish vaccine efficacy. The gp145 Env protein presented in this study forms physical trimers, binds to many of the well-characterized broad neutralizing MAbs that target conserved Env epitopes, and induce cross-subtype neutralizing antibodies as measured in both cell line and primary cell assays. This subtype C Env gp145 protein is currently undergoing good manufacturing practice production for use as a reagent for preclinical studies and for human clinical research. This product will serve as a reagent for comparative studies and may represent a next-generation candidate HIV immunogen.


Asunto(s)
Vacunas contra el SIDA/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/genética , Animales , Evaluación Preclínica de Medicamentos , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/prevención & control , Infecciones por VIH/virología , VIH-1/genética , Humanos , Leucocitos Mononucleares/inmunología , Datos de Secuencia Molecular , Pruebas de Neutralización , Conejos , Vacunación , Productos del Gen env del Virus de la Inmunodeficiencia Humana/administración & dosificación , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
15.
Vaccine ; 33(15): 1757-66, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25698494

RESUMEN

The Division of AIDS Vaccine Research Program funds the discovery and development of HIV/AIDS vaccine candidates. Basic researchers, having discovered a potential vaccine in the laboratory, next want to take that candidate into the clinic to test the concept in humans, to see if it translates. Many of them have heard of "cGMP" and know that they are supposed to make a "GMP product" to take into the clinic, but often they are not very familiar with what "cGMP" means and why these good practices are so important. As members of the Vaccine Translational Research Branch, we frequently get asked "can't we use the material we made in the lab in the clinic?" or "aren't Phase 1 studies exempt from cGMP?" Over the years, we have had many experiences where researchers or their selected contract manufacturing organizations have not applied an appropriate degree of compliance with cGMP suitable for the clinical phase of development. We share some of these experiences and the lessons learned, along with explaining the importance of cGMP, just what cGMP means, and what they can assure, in an effort to de-mystify this subject and facilitate the rapid and safe translational development of HIV vaccines.


Asunto(s)
Vacunas contra el SIDA/normas , Infecciones por VIH/prevención & control , Investigación Biomédica Traslacional/normas , Ensayos Clínicos como Asunto , Regulación Gubernamental , Humanos , Investigación Biomédica Traslacional/legislación & jurisprudencia
16.
J Infect Dis ; 210(1): 99-110, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24403557

RESUMEN

BACKGROUND: Clade B DNA and recombinant modified vaccinia Ankara (MVA) vaccines producing virus-like particles displaying trimeric membrane-bound envelope glycoprotein (Env) were tested in a phase 2a trial in human immunodeficiency virus (HIV)-uninfected adults for safety, immunogenicity, and 6-month durability of immune responses. METHODS: A total of 299 individuals received 2 doses of JS7 DNA vaccine and 2 doses of MVA/HIV62B at 0, 2, 4, and 6 months, respectively (the DDMM regimen); 3 doses of MVA/HIV62B at 0, 2, and 6 months (the MMM regimen); or placebo injections. RESULTS: At peak response, 93.2% of the DDMM group and 98.4% of the MMM group had binding antibodies for Env. These binding antibodies were more frequent and of higher magnitude for the transmembrane subunit (gp41) than the receptor-binding subunit (gp120) of Env. For both regimens, response rates were higher for CD4(+) T cells (66.4% in the DDMM group and 43.1% in the MMM group) than for CD8(+) T cells (21.8% in the DDMM group and 14.9% in the MMM group). Responding CD4(+) and CD8(+) T cells were biased toward Gag, and >70% produced 2 or 3 of the 4 cytokines evaluated (ie, interferon γ, interleukin 2, tumor necrosis factor α, and granzyme B). Six months after vaccination, the magnitudes of antibodies and T-cell responses had decreased by <3-fold. CONCLUSIONS: DDMM and MMM vaccinations with virus-like particle-expressing immunogens elicited durable antibody and T-cell responses.


Asunto(s)
Vacunas contra el SIDA/inmunología , Portadores de Fármacos , VIH-1/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/genética , Adolescente , Adulto , Femenino , Anticuerpos Anti-VIH/sangre , VIH-1/genética , Humanos , Masculino , Persona de Mediana Edad , Placebos/administración & dosificación , Linfocitos T/inmunología , Factores de Tiempo , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/genética , Virus Vaccinia/genética , Adulto Joven , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
17.
J Infect Dis ; 208 Suppl 2: S121-4, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24151317

RESUMEN

Recent advances in the development of humanized mice hold great promise to advance our understanding of protective immunity to human immunodeficiency virus (HIV) infection and to aid in the design of an effective HIV vaccine. This supplement of the Journal of Infectious Diseases summarizes work in the humanized mouse model presented at an HIV Humanized Mouse workshop in Boston, Massachusetts, in November 2012, including recent advances in the development of humanized mice, the trafficking of human immune cells following mucosal HIV transmission, the role of immune activation and Toll-like receptor agonists in the control of HIV, the induction and efficacy of HIV-specific cellular and humoral immune responses, and the preclinical modeling of novel anti-HIV therapeutics. Many gaps remain in our understanding of how to design an effective HIV vaccine and novel therapeutics to eliminate the viral reservoir. Promising early results from studies in humanized mice suggest great potential and enthusiasm for this model to accelerate these critical areas of HIV research.


Asunto(s)
Vacunas contra el SIDA/inmunología , Vacunas contra el SIDA/aislamiento & purificación , Síndrome de Inmunodeficiencia Adquirida/inmunología , Síndrome de Inmunodeficiencia Adquirida/prevención & control , Modelos Animales de Enfermedad , Descubrimiento de Drogas/métodos , Animales , Humanos , Ratones , Ratones SCID
18.
J Infect Dis ; 208(5): 818-29, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23840043

RESUMEN

BACKGROUND: DNA vaccines have been very poorly immunogenic in humans but have been an effective priming modality in prime-boost regimens. Methods to increase the immunogenicity of DNA vaccines are needed. METHODS: HIV Vaccine Trials Network (HVTN) studies 070 and 080 were multicenter, randomized, clinical trials. The human immunodeficiency virus type 1 (HIV-1) PENNVAX®-B DNA vaccine (PV) is a mixture of 3 expression plasmids encoding HIV-1 Clade B Env, Gag, and Pol. The interleukin 12 (IL-12) DNA plasmid expresses human IL-12 proteins p35 and p40. Study subjects were healthy HIV-1-uninfected adults 18-50 years old. Four intramuscular vaccinations were given in HVTN 070, and 3 intramuscular vaccinations were followed by electroporation in HVTN 080. Cellular immune responses were measured by intracellular cytokine staining after stimulation with HIV-1 peptide pools. RESULTS: Vaccination was safe and well tolerated. Administration of PV plus IL-12 with electroporation had a significant dose-sparing effect and provided immunogenicity superior to that observed in the trial without electroporation, despite fewer vaccinations. A total of 71.4% of individuals vaccinated with PV plus IL-12 plasmid with electroporation developed either a CD4(+) or CD8(+) T-cell response after the second vaccination, and 88.9% developed a CD4(+) or CD8(+) T-cell response after the third vaccination. CONCLUSIONS: Use of electroporation after PV administration provided superior immunogenicity than delivery without electroporation. This study illustrates the power of combined DNA approaches to generate impressive immune responses in humans.


Asunto(s)
Vacunas contra el SIDA/efectos adversos , Vacunas contra el SIDA/inmunología , Adyuvantes Inmunológicos/administración & dosificación , ADN/efectos adversos , ADN/inmunología , VIH-1/inmunología , Interleucina-12/administración & dosificación , Vacunas contra el SIDA/administración & dosificación , Adyuvantes Inmunológicos/genética , Adolescente , Adulto , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Citocinas/biosíntesis , ADN/administración & dosificación , Vías de Administración de Medicamentos , Electroporación , Femenino , VIH-1/genética , Humanos , Interleucina-12/genética , Masculino , Persona de Mediana Edad , Vacunación/métodos , Adulto Joven
19.
Vaccine ; 29(10): 1948-58, 2011 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-21216311

RESUMEN

We evaluated replication-defective poxvirus vectors (modified vaccinia Ankara [MVA] and fowlpox [FPV]) in a homologous and heterologous vector prime-boost vaccination regimen containing matching HIV inserts (MVA-HIV and FPV-HIV) given at months 0, 1, 3, 5 and 7 in 150 healthy HIV-negative vaccinia-naïve participants. FPV-HIV alone was poorly immunogenic, while the high dose (10(9)pfu/2 ml) of MVA-HIV alone elicited maximal responses after two injections: CD4+ and CD8+ T-cell responses in 26/55 (47.3%) and 5/60 (8.3%) of participants, respectively, and IFN-γ ELISpot responses in 28/62 (45.2%). The infrequent CD8+ T-cell responses following MVA-HIV priming were boosted only by the heterologous (FPV-HIV) construct in 14/27 (51.9%) of participants post 4th vaccination. Alternatively, HIV envelope-specific binding antibodies were demonstrated in approximately two-thirds of recipients of the homologous boosting regimen, but in less than 20% of subjects after the heterologous vector boost. Thus, a heterologous poxvirus vector prime-boost regimen can induce HIV-specific CD8+ T-cell and CD4+ T-cell responses, which may be an important feature of an optimal regimen for preventive HIV vaccination.


Asunto(s)
Vacunas contra el SIDA/inmunología , Portadores de Fármacos , Virus de la Viruela de las Aves de Corral/genética , Vectores Genéticos , Infecciones por VIH/prevención & control , VIH-1/inmunología , Virus Vaccinia/genética , Vacunas contra el SIDA/genética , Adolescente , Adulto , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Femenino , Anticuerpos Anti-VIH/sangre , VIH-1/genética , Humanos , Inmunización Secundaria/métodos , Masculino , Factores de Tiempo , Vacunación/métodos , Adulto Joven
20.
Curr HIV/AIDS Rep ; 3(1): 39-47, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16522258

RESUMEN

Recent advances in science, which have aided HIV-1 vaccine development, include an improved understanding of HIV-1 envelope structure and function, expansion of the pipeline with innovative vaccine strategies, promising multi-gene and multi-clade vaccines that elicit cellular immunity, conduct of clinical trials in a global network, and development of validated techniques that enable simultaneous measurement of multiple T cell vaccine-induced immune responses in humans. A common feature of several preventive vaccine strategies now in early clinical trials is their ability in nonhuman primates to attenuate clinical disease rather than completely prevent HIV-1 infection. One vaccine concept has been tested in large-scale clinical trials, two are currently in efficacy trials, and one more is poised to enter efficacy trial in the next few years. Simultaneously, expanded efforts continue to identify new designs that induce mucosal immunity as well as broadly neutralizing antibodies.


Asunto(s)
Vacunas contra el SIDA/inmunología , Alergia e Inmunología/tendencias , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/inmunología , ADN Viral/inmunología , Antígenos HLA/inmunología , Humanos , Plásmidos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...